16159 measured reflections

 $R_{\rm int} = 0.054$

6636 independent reflections

4821 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 4-[(4-chlorophenoxy)methyl]-2-(4nitrophenyl)-1,3-thiazole-5-carboxylate

Zhi-Rong Deng, Shu-Qing Wang, Wei-Li Dong* and **Run-Ling Wang***

Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianiin Medical University, Tianjin 300070, People's Republic of China Correspondence e-mail: dwllilly@163.com

Received 15 November 2011; accepted 21 November 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.005 Å; R factor = 0.058; wR factor = 0.138; data-to-parameter ratio = 13.1.

The title compound, $C_{19}H_{15}ClN_2O_5S$, contains two molecules (A and B) in the asymmetric unit. In molecule A, the dihedral angles between the thiazole ring and the pendant chlorobenzene and nitrobenzene rings are 72.14(15) and $3.03(15)^{\circ}$, respectively. The corresponding angles for molecule B are 45.56 (16) and 1.51 (14)°, respectively. In the crystal, both molecules form inversion dimers linked by pairs of weak C- $H \cdots O$ interactions.

Related literature

For the biological activity of related compounds and for related structures, see: Liu et al. (2011a,b,c,d). For further synthetic details, see: Cho et al. (2010).

Experimental

Crystal data C19H15ClN2O5S M = 418.84Triclinic, P1 a = 7.658 (2) Å b = 7.736 (2) Å c = 31.462 (9) Å $\alpha = 95.414(8)^{\circ}$ $\beta = 93.595 \ (13)^{\circ}$

 $\gamma = 95.536 \ (9)^{\circ}$ V = 1841.9 (9) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.36 \text{ mm}^{-1}$ T = 113 K

$0.20 \times 0.18 \times 0.10 \text{ mm}$

Data collection

Rigaku Saturn724+ CCD

diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) $T_{\min} = 0.932, T_{\max} = 0.965$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	507 parameters
$vR(F^2) = 0.138$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$
6636 reflections	$\Delta \rho_{\rm min} = -0.54 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1-H1\cdots O5^i$	0.95	2.37	3.314 (4)	172
$C20-H20\cdots O10^{ii}$	0.95	2.50	3.450 (4)	173

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported financially by the National Natural Science Funds of China (grant No. 21102103), the China Postdoctoral Science Foundation (grant No. 2011M500532), the General Program of the National Natural Science Foundation of China (grant No. 20972112), the Research Fund for the Doctoral Program of Higher Education of China (grant No. 20091202110010) and the Key Program of Tianjin Municipal Natural Science Foundation (grant No. 09JCZDJC21600).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6513).

References

- Cho, D., Ahn, J., De Castro, K. A., Ahn, H. & Rhee, H. (2010). Tetrahedron, 66, 5583-5588.
- Liu, H.-J., Weng, J.-Q., Tan, C.-X. & Liu, X.-H. (2011b). Acta Cryst. E67, o1940. Liu, X.-H., Pan, L., Ma, Y., Jian, Q.-W., Tan, C.-X., Li, Y. H., Shi, Y.-X., Li, B.-J.,

Li, Z.-M. & Zhang, Y.-G. (2011c). Chem. Biol. Drug Des. 78, 689-694.

Liu, X.-H., Pan, L., Tan, C.-X., Weng, J.-Q., Wang, B.-L. & Li, Z.-M. (2011a). Pestic. BioChem. Phys. 101, 143-147.

Liu, X.-H., Tan, C.-X. & Jian, Q.-W. (2011d). Phosphorus Sulfur, 186, 552-557. Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, o3433 [doi:10.1107/S1600536811049774]

Ethyl 4-[(4-chlorophenoxy)methyl]-2-(4-nitrophenyl)-1,3-thiazole-5-carboxylate

Z.-R. Deng, S.-Q. Wang, W.-L. Dong and R.-L. Wang

Experimental

The title compound was prepared according to the literature procedures (Cho et al., 2010). Colourless blocks of (I) were grown from slow evaporation of ethanol solution at room temperature.

Refinement

All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}$ (methyl C).

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

Ethyl 4-[(4-chlorophenoxy)methyl]-2-(4-nitrophenyl)-1,3-thiazole-5-carboxylate

Z = 4
F(000) = 864
$D_{\rm x} = 1.510 {\rm ~Mg~m}^{-3}$
Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 5373 reflections
$\theta = 2.0 - 28.0^{\circ}$
$\mu = 0.36 \text{ mm}^{-1}$
T = 113 K
Block, colorless
$0.20\times0.18\times0.10~mm$

Data collection

Rigaku Saturn724+ CCD diffractometer	6636 independent reflections
Radiation source: fine-focus sealed tube	4821 reflections with $I > 2\sigma(I)$
graphite	$R_{\text{int}} = 0.054$
Detector resolution: 28.5714 pixels mm ⁻¹	$\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
profile data from ω–scans	$h = -9 \rightarrow 9$

Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)	$k = -9 \rightarrow 9$
$T_{\min} = 0.932, T_{\max} = 0.965$	$l = -34 \rightarrow 37$
16159 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.058$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.138$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0487P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
6636 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
507 parameters	$\Delta \rho_{max} = 0.70 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.54 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.06288 (14)	0.22346 (16)	0.14799 (3)	0.0624 (3)
C12	0.75805 (14)	0.89132 (14)	0.35049 (3)	0.0543 (3)
S1	0.31213 (10)	0.60383 (11)	0.47252 (2)	0.0282 (2)
S2	0.38418 (10)	0.69544 (11)	0.02723 (2)	0.0270 (2)
01	-0.2945 (3)	0.9265 (4)	0.62204 (8)	0.0494 (7)
O2	-0.4697 (3)	0.9946 (3)	0.57059 (8)	0.0458 (7)
O3	0.1342 (3)	0.4482 (3)	0.33207 (7)	0.0371 (6)
O4	0.5159 (3)	0.4840 (3)	0.36414 (7)	0.0329 (6)
O5	0.5999 (3)	0.4344 (4)	0.43078 (7)	0.0481 (7)
O6	0.0810 (3)	1.2838 (4)	-0.12206 (7)	0.0473 (7)
O7	0.0164 (3)	1.4680 (3)	-0.07058 (7)	0.0431 (6)
O8	0.5491 (3)	0.8696 (3)	0.16726 (7)	0.0391 (6)
O9	0.4837 (3)	0.4928 (3)	0.13384 (7)	0.0393 (6)
O10	0.5477 (3)	0.4164 (3)	0.06707 (7)	0.0479 (7)

N1	-0.3375 (4)	0.9339 (4)	0.58378 (9)	0.0351 (7)
N2	0.0807 (3)	0.6965 (4)	0.41884 (8)	0.0284 (6)
N3	0.0757 (3)	1.3317 (4)	-0.08384 (9)	0.0329 (7)
N4	0.3024 (3)	0.9408 (4)	0.08080 (8)	0.0269 (6)
C1	0.0473 (4)	0.7472 (4)	0.53661 (10)	0.0273 (8)
H1	0.1548	0.7055	0.5458	0.033*
C2	-0.0636 (4)	0.8068 (4)	0.56656 (10)	0.0292 (8)
H2	-0.0337	0.8070	0.5963	0.035*
C3	-0.2193 (4)	0.8660 (4)	0.55205 (10)	0.0283 (8)
C4	-0.2677 (4)	0.8684 (4)	0.50915 (10)	0.0264 (7)
H4	-0.3748	0.9112	0.5002	0.032*
C5	-0.1574 (4)	0.8076 (4)	0.47948 (10)	0.0264 (8)
Н5	-0.1897	0.8060	0.4498	0.032*
C6	0.0014 (4)	0.7483 (4)	0.49283 (9)	0.0258 (7)
C7	0.1180 (4)	0.6887 (4)	0.45996 (10)	0.0257 (8)
C8	0.3452 (4)	0.5764 (4)	0.41898 (9)	0.0265 (8)
С9	0.2093 (4)	0.6326 (4)	0.39547 (10)	0.0274 (8)
C10	0.1867 (4)	0.6278 (5)	0.34789 (9)	0.0337 (8)
H10A	0.0954	0.7027	0.3394	0.040*
H10B	0.2985	0.6696	0.3362	0.040*
C11	0.1246 (4)	0.4053 (5)	0.28864 (10)	0.0325 (8)
C12	0.0871 (4)	0.2302 (5)	0.27464 (11)	0.0414 (9)
H12	0.0740	0.1475	0.2950	0.050*
C13	0.0684 (4)	0.1737 (5)	0.23175 (11)	0.0435 (10)
H13	0.0434	0.0529	0.2224	0.052*
C14	0.0866 (4)	0.2951 (6)	0.20225 (11)	0.0419 (10)
C15	0.1222 (5)	0.4678 (5)	0.21532 (11)	0.0448 (10)
H15	0.1323	0.5494	0.1946	0.054*
C16	0.1441 (4)	0.5272 (5)	0.25884 (11)	0.0400 (9)
H16	0.1717	0.6479	0.2680	0.048*
C17	0.5000 (4)	0.4921 (5)	0.40608 (11)	0.0304 (8)
C18	0.6616 (4)	0.3931 (5)	0.34835 (11)	0.0395 (9)
H18A	0.6565	0.2742	0.3577	0.047*
H18B	0.7758	0.4579	0.3593	0.047*
C19	0.6409 (4)	0.3845 (5)	0.30047 (10)	0.0427 (10)
H19A	0.5281	0.3186	0.2901	0.064*
H19B	0.7370	0.3262	0.2882	0.064*
H19C	0.6440	0.5030	0.2918	0.064*
C20	0.2591 (4)	0.9569 (4)	-0.03709 (9)	0.0254 (7)
H20	0.3027	0.8497	-0.0463	0.030*
C21	0.2033 (4)	1.0641 (4)	-0.06709 (10)	0.0253 (7)
H21	0.2087	1.0325	-0.0969	0.030*
C22	0.1395 (4)	1.2188 (4)	-0.05227 (10)	0.0263 (8)
C23	0.1314 (4)	1.2715 (4)	-0.00937 (9)	0.0260 (7)
H23	0.0880	1.3790	-0.0004	0.031*
C24	0.1879 (4)	1.1641 (4)	0.02008 (10)	0.0258 (7)
H24	0.1835	1.1980	0.0498	0.031*
C25	0.2512 (3)	1.0067 (4)	0.00690 (9)	0.0215 (7)
C26	0.3069 (3)	0.8944 (4)	0.03974 (9)	0.0227 (7)

C27	0.4094 (4)	0.6720 (4)	0.08080 (9)	0.0256 (7)
C28	0.3598 (4)	0.8142 (4)	0.10414 (9)	0.0260 (8)
C29	0.3674 (4)	0.8490 (5)	0.15229 (10)	0.0352 (9)
H29A	0.3119	0.9563	0.1607	0.042*
H29B	0.3043	0.7502	0.1647	0.042*
C30	0.5855 (4)	0.8708 (5)	0.21057 (10)	0.0337 (9)
C31	0.7463 (4)	0.8208 (5)	0.22347 (11)	0.0419 (10)
H31	0.8221	0.7818	0.2026	0.050*
C32	0.7992 (5)	0.8266 (5)	0.26642 (11)	0.0437 (10)
H32	0.9109	0.7929	0.2751	0.052*
C33	0.6870 (5)	0.8826 (5)	0.29680 (10)	0.0385 (9)
C34	0.5246 (4)	0.9283 (5)	0.28490 (11)	0.0379 (9)
H34	0.4479	0.9636	0.3059	0.045*
C35	0.4729 (5)	0.9223 (5)	0.24120 (11)	0.0386 (9)
H35	0.3602	0.9537	0.2325	0.046*
C36	0.4860 (4)	0.5145 (5)	0.09238 (11)	0.0317 (8)
C37	0.5723 (6)	0.3412 (5)	0.14607 (12)	0.0566 (12)
H37A	0.5024	0.2315	0.1338	0.068*
H37B	0.6898	0.3444	0.1345	0.068*
C38	0.5903 (6)	0.3461 (6)	0.19137 (12)	0.0651 (13)
H38A	0.6576	0.4558	0.2034	0.098*
H38B	0.6522	0.2476	0.1994	0.098*
H38C	0.4735	0.3381	0.2025	0.098*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0789 (8)	0.0728 (9)	0.0332 (6)	0.0111 (6)	0.0073 (5)	-0.0124 (5)
Cl2	0.0793 (7)	0.0543 (7)	0.0292 (5)	0.0136 (6)	-0.0041 (5)	0.0023 (5)
S1	0.0269 (4)	0.0314 (5)	0.0265 (5)	0.0083 (4)	0.0003 (3)	0.0002 (4)
S2	0.0299 (4)	0.0238 (5)	0.0267 (5)	0.0065 (4)	-0.0012 (3)	-0.0019 (4)
01	0.0576 (17)	0.063 (2)	0.0317 (15)	0.0229 (14)	0.0142 (12)	0.0032 (13)
O2	0.0411 (15)	0.0510 (19)	0.0493 (16)	0.0228 (13)	0.0121 (12)	0.0010 (13)
O3	0.0433 (14)	0.0385 (16)	0.0268 (13)	-0.0016 (12)	0.0015 (10)	-0.0046 (11)
O4	0.0287 (12)	0.0390 (16)	0.0329 (14)	0.0123 (11)	0.0078 (10)	0.0001 (11)
O5	0.0421 (15)	0.071 (2)	0.0341 (14)	0.0317 (14)	-0.0020 (11)	0.0000 (14)
O6	0.0652 (17)	0.0533 (19)	0.0289 (14)	0.0219 (14)	0.0086 (12)	0.0126 (13)
O7	0.0471 (15)	0.0401 (17)	0.0462 (16)	0.0212 (13)	0.0030 (12)	0.0088 (13)
08	0.0378 (14)	0.0485 (18)	0.0278 (13)	-0.0048 (12)	-0.0015 (10)	-0.0016 (12)
09	0.0582 (16)	0.0258 (15)	0.0341 (14)	0.0139 (12)	-0.0096 (11)	0.0026 (11)
O10	0.0687 (18)	0.0373 (17)	0.0391 (15)	0.0269 (14)	-0.0019 (13)	-0.0062 (12)
N1	0.0354 (17)	0.0311 (19)	0.0399 (19)	0.0074 (14)	0.0118 (14)	-0.0004 (15)
N2	0.0306 (15)	0.0284 (17)	0.0264 (15)	0.0072 (12)	0.0024 (12)	-0.0004 (12)
N3	0.0274 (15)	0.038 (2)	0.0357 (18)	0.0065 (14)	0.0037 (12)	0.0100 (14)
N4	0.0283 (15)	0.0282 (17)	0.0250 (15)	0.0064 (12)	0.0047 (11)	0.0014 (12)
C1	0.0223 (16)	0.029 (2)	0.0310 (19)	0.0076 (14)	-0.0013 (13)	0.0005 (15)
C2	0.0328 (18)	0.028 (2)	0.0263 (18)	0.0046 (15)	0.0030 (14)	0.0008 (15)
C3	0.0315 (18)	0.0208 (19)	0.0336 (19)	0.0064 (15)	0.0109 (14)	-0.0009 (15)

C4	0.0234 (17)	0.0211 (19)	0.0341 (19)	0.0030 (14)	0.0013 (14)	-0.0001 (15)
C5	0.0274 (17)	0.024 (2)	0.0271 (18)	0.0039 (14)	0.0002 (13)	-0.0004 (14)
C6	0.0298 (17)	0.0201 (19)	0.0271 (18)	0.0032 (14)	0.0014 (13)	0.0009 (14)
C7	0.0242 (17)	0.0207 (19)	0.0312 (19)	0.0023 (14)	-0.0015 (13)	0.0001 (15)
C8	0.0281 (17)	0.023 (2)	0.0272 (18)	0.0034 (14)	0.0018 (13)	-0.0023 (15)
C9	0.0305 (18)	0.029 (2)	0.0237 (17)	0.0053 (15)	0.0063 (13)	0.0010 (15)
C10	0.0356 (19)	0.038 (2)	0.0285 (19)	0.0097 (17)	0.0048 (14)	-0.0002 (16)
C11	0.0260 (18)	0.044 (2)	0.0272 (19)	0.0087 (16)	0.0039 (14)	-0.0024 (17)
C12	0.046 (2)	0.038 (3)	0.039 (2)	-0.0013 (18)	0.0043 (17)	0.0000 (18)
C13	0.041 (2)	0.042 (3)	0.045 (2)	0.0008 (19)	0.0050 (17)	-0.005 (2)
C14	0.039 (2)	0.055 (3)	0.032 (2)	0.0090 (19)	0.0072 (16)	-0.0057 (19)
C15	0.057 (2)	0.044 (3)	0.036 (2)	0.013 (2)	0.0135 (18)	0.0045 (19)
C16	0.044 (2)	0.044 (3)	0.035 (2)	0.0099 (18)	0.0080 (16)	0.0050 (18)
C17	0.0273 (18)	0.028 (2)	0.035 (2)	0.0039 (15)	0.0023 (15)	-0.0031 (16)
C18	0.0293 (19)	0.044 (3)	0.047 (2)	0.0147 (17)	0.0132 (16)	-0.0025 (18)
C19	0.048 (2)	0.040 (3)	0.042 (2)	0.0097 (18)	0.0189 (17)	0.0019 (18)
C20	0.0247 (17)	0.024 (2)	0.0281 (18)	0.0072 (14)	0.0024 (13)	0.0014 (14)
C21	0.0236 (16)	0.025 (2)	0.0256 (18)	0.0000 (14)	0.0024 (13)	-0.0012 (14)
C22	0.0198 (16)	0.029 (2)	0.0313 (19)	0.0034 (14)	0.0002 (13)	0.0070 (15)
C23	0.0197 (16)	0.026 (2)	0.0318 (19)	0.0017 (14)	0.0022 (13)	0.0004 (15)
C24	0.0228 (16)	0.030 (2)	0.0239 (17)	0.0051 (14)	0.0022 (13)	-0.0019 (15)
C25	0.0164 (15)	0.0236 (19)	0.0235 (17)	-0.0007 (13)	0.0004 (12)	0.0011 (14)
C26	0.0178 (16)	0.0202 (19)	0.0291 (18)	0.0002 (13)	0.0008 (13)	-0.0008 (14)
C27	0.0251 (17)	0.028 (2)	0.0241 (17)	0.0036 (14)	-0.0020 (13)	0.0046 (14)
C28	0.0245 (17)	0.029 (2)	0.0242 (17)	0.0018 (15)	-0.0003 (13)	0.0019 (15)
C29	0.038 (2)	0.037 (2)	0.032 (2)	0.0064 (17)	0.0060 (15)	0.0045 (17)
C30	0.047 (2)	0.028 (2)	0.0230 (18)	-0.0080 (17)	0.0034 (15)	-0.0012 (15)
C31	0.039 (2)	0.051 (3)	0.034 (2)	0.0018 (18)	0.0027 (16)	-0.0033 (19)
C32	0.046 (2)	0.048 (3)	0.037 (2)	0.0106 (19)	0.0025 (17)	-0.0035 (19)
C33	0.062 (2)	0.026 (2)	0.0265 (19)	0.0013 (18)	0.0015 (17)	0.0006 (16)
C34	0.049 (2)	0.032 (2)	0.033 (2)	0.0055 (18)	0.0071 (16)	0.0002 (17)
C35	0.045 (2)	0.037 (2)	0.035 (2)	0.0054 (18)	0.0081 (16)	-0.0008 (17)
C36	0.0324 (19)	0.031 (2)	0.030 (2)	0.0027 (16)	-0.0089 (15)	0.0029 (16)
C37	0.103 (3)	0.026 (2)	0.042 (2)	0.023 (2)	-0.011 (2)	0.0083 (19)
C38	0.090 (3)	0.040 (3)	0.064 (3)	0.015 (2)	-0.025 (2)	0.010 (2)
Geometric pa	rameters (Å, °)					
Cl1—C14		1.737 (3)	C12-	-H12	0.95	00
Cl2—C33		1.735 (3)	C13–	C14	1.38	5 (5)
S1—C8		1.716 (3)	C13-	-H13	0.95	00
S1—C7		1.721 (3)	C14–	C15	1.35	7 (5)
S2—C27		1.713 (3)	C15–	C16	1.39	7 (4)

C15-H15

C16—H16

C18-C19

C18—H18A

C18—H18B

C19—H19A

1.722 (3)

1.236 (3)

1.222 (3)

1.371 (4)

1.441 (4)

1.329 (4)

S2-C26

01—N1

O2—N1

O3—C11

O3—C10

O4-C17

0.9500

0.9500

0.9900

0.9900 0.9800

1.499 (4)

04 C18	1 463 (3)	C10 H10R	0.0800
05-017	1.403(3) 1.202(4)	C19—H19C	0.9800
06—N3	1 229 (3)	C20_C21	1.388(4)
07—N3	1.225(3)	C20 C21	1.308(4) 1 408(4)
08-030	1.233(3) 1.373(4)	C20—H20	0.9500
08-029	1 430 (4)	$C_{21} - C_{22}$	1.387(4)
09-025	1 332 (4)	C21—H21	0.9500
09-037	1 480 (4)	C^{22} C^{23}	1 380 (4)
010-C36	1 198 (4)	C23—C24	1 379 (4)
N1—C3	1.483 (4)	C23—H23	0.9500
N2—C7	1.316 (4)	C24—C25	1.391 (4)
N2—C9	1.368 (4)	C24—H24	0.9500
N3—C22	1.475 (4)	C25—C26	1.479 (4)
N4—C26	1.311 (4)	C27—C28	1.363 (4)
N4—C28	1.368 (4)	C27—C36	1.468 (5)
C1—C2	1.384 (4)	C28—C29	1.510 (4)
C1—C6	1.401 (4)	С29—Н29А	0.9900
С1—Н1	0.9500	С29—Н29В	0.9900
С2—С3	1.384 (4)	C30—C31	1.375 (5)
С2—Н2	0.9500	C30—C35	1.389 (4)
C3—C4	1.380 (4)	C31—C32	1.381 (4)
C4—C5	1.378 (4)	С31—Н31	0.9500
C4—H4	0.9500	C32—C33	1.391 (5)
C5—C6	1.395 (4)	С32—Н32	0.9500
С5—Н5	0.9500	C33—C34	1.365 (5)
C6—C7	1.478 (4)	C34—C35	1.402 (4)
C8—C9	1.368 (4)	С34—Н34	0.9500
C8—C17	1.468 (4)	С35—Н35	0.9500
C9—C10	1.493 (4)	C37—C38	1.420 (5)
C10—H10A	0.9900	С37—Н37А	0.9900
C10—H10B	0.9900	С37—Н37В	0.9900
C11—C12	1.382 (5)	C38—H38A	0.9800
C11—C16	1.395 (5)	C38—H38B	0.9800
C12—C13	1.373 (4)	C38—H38C	0.9800
C8—S1—C7	89.05 (15)	H18A—C18—H18B	108.7
C27—S2—C26	89.03 (15)	C18—C19—H19A	109.5
C11—O3—C10	117.6 (3)	C18—C19—H19B	109.5
C17—O4—C18	116.1 (3)	H19A—C19—H19B	109.5
C30—O8—C29	116.6 (2)	C18—C19—H19C	109.5
C36—O9—C37	113.7 (3)	H19A—C19—H19C	109.5
O2—N1—O1	124.3 (3)	H19B—C19—H19C	109.5
O2—N1—C3	118.3 (3)	C21—C20—C25	120.1 (3)
O1—N1—C3	117.5 (3)	С21—С20—Н20	119.9
C7—N2—C9	110.5 (3)	С25—С20—Н20	119.9
O6—N3—O7	123.3 (3)	C20—C21—C22	118.0 (3)
O6—N3—C22	118.3 (3)	C20—C21—H21	121.0
O7—N3—C22	118.4 (3)	C22—C21—H21	121.0
C26—N4—C28	110.4 (3)	C23—C22—C21	123.2 (3)
C2—C1—C6	120.1 (3)	C23—C22—N3	118.3 (3)

C2—C1—H1	120.0	C21—C22—N3	118.5 (3)
С6—С1—Н1	120.0	C22—C23—C24	118.2 (3)
C1—C2—C3	118.4 (3)	С22—С23—Н23	120.9
C1—C2—H2	120.8	С24—С23—Н23	120.9
C3—C2—H2	120.8	C23—C24—C25	120.9 (3)
C4—C3—C2	122.7 (3)	C23—C24—H24	119.6
C4—C3—N1	118.3 (3)	С25—С24—Н24	119.6
C2—C3—N1	118.9 (3)	C24—C25—C20	119.6 (3)
C5—C4—C3	118.7 (3)	C24—C25—C26	118.8 (3)
С5—С4—Н4	120.7	C20—C25—C26	121.6 (3)
C3—C4—H4	120.7	N4—C26—C25	122.0 (3)
C4—C5—C6	120.3 (3)	N4—C26—S2	115.0 (2)
С4—С5—Н5	119.8	C25—C26—S2	122.9 (2)
С6—С5—Н5	119.8	C28—C27—C36	133.4 (3)
C5—C6—C1	119.8 (3)	C28—C27—S2	110.2 (3)
C5—C6—C7	118.6 (3)	C36—C27—S2	116.3 (2)
C1—C6—C7	121.6 (3)	C27—C28—N4	115.4 (3)
N2—C7—C6	122.3 (3)	C27—C28—C29	127.3 (3)
N2—C7—S1	115.0 (2)	N4—C28—C29	117.2 (3)
C6—C7—S1	122.6 (2)	O8—C29—C28	107.0 (2)
C9—C8—C17	131.6 (3)	O8—C29—H29A	110.3
C9—C8—S1	110.3 (2)	С28—С29—Н29А	110.3
C17—C8—S1	118.0 (2)	O8—C29—H29B	110.3
N2—C9—C8	115.1 (3)	С28—С29—Н29В	110.3
N2—C9—C10	117.9 (3)	H29A—C29—H29B	108.6
C8—C9—C10	126.9 (3)	O8—C30—C31	116.4 (3)
O3—C10—C9	106.2 (3)	O8—C30—C35	124.2 (3)
O3—C10—H10A	110.5	C31—C30—C35	119.4 (3)
C9—C10—H10A	110.5	C30—C31—C32	120.8 (3)
O3—C10—H10B	110.5	C30—C31—H31	119.6
C9—C10—H10B	110.5	C32—C31—H31	119.6
H10A—C10—H10B	108.7	C31—C32—C33	119.3 (4)
O3—C11—C12	116.3 (3)	C31—C32—H32	120.4
O3—C11—C16	124.0 (3)	C33—C32—H32	120.4
C12—C11—C16	119.7 (3)	C34—C33—C32	121.2 (3)
C13—C12—C11	121.0 (4)	C34—C33—Cl2	120.6 (3)
C13—C12—H12	119.5	C32—C33—C12	118.3 (3)
C11—C12—H12	119.5	C33—C34—C35	119.0 (3)
C12—C13—C14	119.1 (4)	С33—С34—Н34	120.5
С12—С13—Н13	120.4	С35—С34—Н34	120.5
C14—C13—H13	120.4	C30—C35—C34	120.4 (3)
C15—C14—C13	120.8 (3)	С30—С35—Н35	119.8
C15—C14—Cl1	120.1 (3)	С34—С35—Н35	119.8
C13—C14—Cl1	119.1 (3)	O10—C36—O9	123.2 (3)
C14—C15—C16	120.8 (4)	010-C36-C27	123.2 (3)
C14—C15—H15	119.6	09—C36—C27	113.7 (3)
C16—C15—H15	119.6	C38—C37—O9	109.6 (3)
C11—C16—C15	118.5 (4)	C38—C37—H37A	109.8
C11—C16—H16	120.7	09—C37—H37A	109.8

C15—C16—H16	120.7	С38—С37—Н37В	109.8
O5—C17—O4	123.8 (3)	О9—С37—Н37В	109.8
O5—C17—C8	123.5 (3)	Н37А—С37—Н37В	108.2
O4—C17—C8	112.7 (3)	С37—С38—Н38А	109.5
O4—C18—C19	106.2 (3)	С37—С38—Н38В	109.5
O4—C18—H18A	110.5	H38A—C38—H38B	109.5
C19—C18—H18A	110.5	С37—С38—Н38С	109.5
O4—C18—H18B	110.5	H38A—C38—H38C	109.5
C19—C18—H18B	110.5	H38B—C38—H38C	109.5
C6—C1—C2—C3	0.2 (5)	C25—C20—C21—C22	-0.4 (4)
C1—C2—C3—C4	-0.2 (5)	C20—C21—C22—C23	0.9 (4)
C1—C2—C3—N1	-178.6 (3)	C20-C21-C22-N3	-178.5 (3)
O2—N1—C3—C4	-2.4 (5)	O6—N3—C22—C23	-179.2 (3)
O1—N1—C3—C4	178.1 (3)	O7—N3—C22—C23	-0.5 (4)
O2—N1—C3—C2	176.1 (3)	O6—N3—C22—C21	0.3 (4)
O1—N1—C3—C2	-3.4 (5)	O7—N3—C22—C21	178.9 (3)
C2—C3—C4—C5	0.7 (5)	C21—C22—C23—C24	-0.6 (4)
N1—C3—C4—C5	179.2 (3)	N3—C22—C23—C24	178.7 (3)
C3—C4—C5—C6	-1.3 (5)	C22—C23—C24—C25	-0.1(4)
C4—C5—C6—C1	1.4 (5)	C23—C24—C25—C20	0.5 (4)
C4—C5—C6—C7	-178.3(3)	C_{23} C_{24} C_{25} C_{26}	-178.8(3)
C_{2} — C_{1} — C_{6} — C_{5}	-0.8(5)	C21—C20—C25—C24	-0.2(4)
C_{2} — C_{1} — C_{6} — C_{7}	178.9 (3)	C21—C20—C25—C26	179.0 (3)
$C_{2} = 01 = 00 = 07$	-1797(3)	$C_{28} = N_{4} = C_{26} = C_{25}$	179.8 (3)
C9 - N2 - C7 - S1	0.2.(4)	$C_{28} = N_{4} = C_{26} = S_{2}$	-0.9(3)
$C_{5} = C_{6} = C_{7} = N_{2}^{2}$	2.9(5)	C_{24} C_{25} C_{26} N_{4}	-1.8(4)
C1 - C6 - C7 - N2	-1768(3)	$C_{20} - C_{25} - C_{26} - N_{4}$	179.0 (3)
$C_{5} - C_{6} - C_{7} - S_{1}$	-177.0(2)	$C_{24} = C_{25} = C_{26} = S_{2}$	179.0 (2)
C1 - C6 - C7 - S1	3 3 (4)	$C_{20} = C_{25} = C_{26} = S_{2}^{2}$	-0.3(4)
C8 = S1 = C7 = N2	-0.2(3)	$C_{20} = C_{20} = C_{20} = S_{20}$	0.5(1)
C8 = S1 = C7 = C6	179.7 (3)	$C_{27} = S_{2} = C_{26} = C_{25}$	-1799(3)
C7 = S1 = C8 = C9	01(3)	$C_{26} = S_{2} = C_{27} = C_{28}$	-0.4(2)
C7 = S1 = C8 = C17	-1767(3)	$C_{26} = S_{2} = C_{27} = C_{36}$	-1773(3)
C7 = N2 = C9 = C8	-0.2(4)	$C_{26} = C_{27} = C_{28} = N_4$	176 2 (3)
C7 - N2 - C9 - C10	178.7(3)	$S_{2} = C_{27} = C_{28} = N_{4}$	0.0(3)
$C_{17} - C_{8} - C_{9} - N_{2}^{2}$	176.2 (3)	$C_{26} = C_{27} = C_{28} = C_{29}$	-15(6)
S1-C8-C9-N2	0.0(4)	S_{2}^{2} C_{2}^{2} C_{2}^{2} C_{2}^{2} C_{2}^{2} C_{2}^{2}	-177.6(2)
C17 - C8 - C9 - C10	-26(6)	$C_{26} = N_{4} = C_{28} = C_{27}$	0.6(4)
$S_1 - C_8 - C_9 - C_{10}$	-1787(3)	$C_{26} = N_{4} = C_{28} = C_{29}$	1785(2)
51 - 63 - 67 - 610	-172.6(2)	$C_{20} = 0.08 = 0.029$	-1685(3)
$N_{2}^{2} = C_{1}^{0} = C_{1}^{0} = C_{2}^{0}$	-1040(3)	$C_{27} = C_{28} = C_{29} = 0.8$	65 7 (4)
$C_{8} = C_{9} = C_{10} = C_{3}$	74.7(4)	$N_{4} = C_{28} = C_{29} = 0.8$	-1119(3)
$C_{10} = 0^{3} = C_{11} = C_{12}^{12}$	175 2 (3)	$C_{29} = 08 = C_{30} = C_{31}$	111.9(3) 154.8(3)
$C_{10} = 0.3 = C_{11} = C_{12}$	-71(4)	(29-08-(30-(35)))	-267(5)
03-011-012-013	177 7 (3)	08-030-031-032	20.7(3)
C16-C11-C12-C13	-01(5)	$C_{35} = C_{30} = C_{31} = C_{32}$	-21(6)
C_{11} C_{12} C_{13} C_{14}	-0.4(5)	C_{30} C_{31} C_{32} C_{32}	2.1(0)
C_{12} C_{12} C_{13} C_{14} C_{15}	-0.1(5)	$C_{31} - C_{32} - C_{33} - C_{34}$	13(6)
C_{12} C_{13} C_{14} C_{13} C_{14} C_{13}	(3)	$C_{31} = C_{32} = C_{33} = C_{34}$	-170.2(2)
012-013-014-011	100.0 (5)	031-032-033-012	1/9.2 (3)

C13-C14-C15-C16	1.0 (6)	C32—C33—C34—C35	-1.5 (6)
Cl1—C14—C15—C16	-179.1 (3)	Cl2—C33—C34—C35	179.0 (3)
O3—C11—C16—C15	-176.6 (3)	O8—C30—C35—C34	-176.6 (3)
C12-C11-C16-C15	1.0 (5)	C31—C30—C35—C34	1.8 (5)
C14-C15-C16-C11	-1.5 (5)	C33—C34—C35—C30	0.0 (5)
C18—O4—C17—O5	2.2 (5)	C37—O9—C36—O10	2.9 (5)
C18—O4—C17—C8	-176.8 (3)	C37—O9—C36—C27	-175.8 (3)
C9—C8—C17—O5	-172.4 (4)	C28—C27—C36—O10	-167.3 (3)
S1—C8—C17—O5	3.5 (5)	S2-C27-C36-O10	8.7 (5)
C9—C8—C17—O4	6.6 (5)	C28—C27—C36—O9	11.4 (5)
S1—C8—C17—O4	-177.5 (2)	S2—C27—C36—O9	-172.6 (2)
C17—O4—C18—C19	174.1 (3)	C36—O9—C37—C38	169.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
C1—H1···O5 ⁱ	0.95	2.37	3.314 (4)	172
C20—H20····O10 ⁱⁱ	0.95	2.50	3.450 (4)	173
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) $-x+1$, $-y$	+1, <i>-z</i> .			

